Shiqi Xu

⊠ shiqixudev@gmail.com ♥waltzina.github.io \$loogle scholar Linked

Expertise

- 7 years of experience in designing and prototyping computational imaging systems with a focus on novel methods in highthroughput light and X-ray microscopy. Experienced in developing machine learning and computer vision algorithms to assist gigapixel-scale medical and scientific image analysis. Contributed to 18 peer-reviewed article publications (7 firstauthored), and two issued patents.

Education

Duke University Durham, NC	2019–2023
 Ph.D. in Biomedical Engineering Thesis: Computational Bio-Optical Imaging with Novel Sensor Arrays 	Advisor: Dr. Roarke Horstmeyer
Washington University in St Louis St. Louis, MO	2017–2019
- Degree: M.S. in Electrical Engineering	Advisor: Dr. Ulugbek Kamilov
- Thesis: Regularized Fourier ptychographic microscopy	2012 2016
University of Illinois at Urbana-Champaign Urbana-Champaign, IL - Degree: B.S. in Electrical Engineering	2013–2016 Advisor: Dr. Michael Oelze
- Senior Design Project: Light Pipe Organ (Best signal-processing area award)	ravisor. Di. Michael Oelze
Industrial Experience	
Carl Zeiss, X-ray Microscopy. Dublin, CA	2023–
 Senior Algorithm Scientist in Advanced Research and Development team (i) Developed a deep learning-assisted artifact removal pipeline for high cone angle focus on applications in laminographic CT for wafer-level advanced packaging insp submission under review). (ii) Developed high-resolution wavefront sensing methods that outfit a laboratory X of low-absorption materials and subpixel density fluctuation. 	pection (patent provision and conference
Meta, Reality Labs Research Redmond, WA	2022
 Optical Scientist Intern in Eye Tracking and Optics & Display Research team (i) Developed an estimation theory-based method to quantify the achievable perform and prototype a miniaturized FMCW-LiDAR-based eye-tracking system based on the 	
Academic Experience	
Duke University Durham, NC	2019–2023
 Graduate research assistant in the Computational Optics Lab (i) Developed computational illumination-based optical microscopy systems to create cells and tissue samples. Related publications: [1][2][3][4] (ii) Developed SPAD array-based highly sensitive optical imaging systems to non 	
underneath intact adult skull. [1][2][3]	invasively monitor cerebrar brood now
(iii) Developed image processing pipelines for the behavior analysis of microorga and fluorescence microscope videos. These tasks include segmentation, object det depth estimation, and pose estimation. [1][2][3]	
(iv) Supported the development of self-supervised and weakly-supervised machine such as Covid-19, malaria, and adenocarcinoma from cytology and histopathology set	
Washington University in St Louis St. Louis, MO	2017–2019
 Graduate research assistant in the Computational Imaging Group; (i) Developed compressive sensing algorithms to reconstruct optical phase images of measurements. [1] 	Advisor: Dr. Ulugbek Kamilov unlabeled living cell cultures from fewer
 Graduate research assistant in the Optical and Ultrasound Imaging Lab; (i) Developed and deployed an object detection-based computer vision algorithm for raphy system for rapid colorectal cancer imaging and diagnosis. [1] (ii) Developed a sensor-fusion algorithm for improved ultrasound-guided diffuse 	
breast cancer diagnosis. [1]	
TECHNICAL SKILLS	
 Scientific programming: Fluent in Python (Pytorch, Tensorflow, OpenCV, Scikit-Im. Hardware skills: Experienced at optical system prototyping. Comfortable with optical system prototyping. 	

Honors and Award

- 2020 Duke Theo Pilkington Fellowship in Biomedical Engineering
- 2019 Duke Biomedical Engineering Scholar Award

Peer-reviewed article publications

- 1. Xu, S., Dai, X., Ritter, P., Kreiss, L., ... & Horstmeyer, R., 2023. Tensorial tomographic Fourier Ptychography with applications to muscle tissue imaging. Advanced Photonics. Link
- 2. Kreiss, L., Jiang, S., Li, X., Xu, S., Zhou, K.C., Mühlberg, A., Lee, K.C., Kim, K., Chaware, A., Ando, M. and Barisoni, L., Digital staining in optical microscopy using deep learning a review. PhotoniX 4, 34 (2023). Link
- 3. Harfouche, M., Kim, K., ... & Horstmeyer, R., 2022. Multi-scale gigapixel microscopy using a multi-camera array microscope. *Optica* 10(4), 471-480 (2023). Link
- 4. Yang, X., Harfouche, M., Zhou, K.C., Kreiss, L., Xu, S., Kim, K., Horstmeyer, R., 2022. Multi-modal imaging using a cascaded microscope design. *Optics Letter*,48 (7), 1658-1661. Link
- 5. Thomson, E., Harfouche, M., Konda, P., Seitz, C.W., Kim, K., Cooke, C., **Xu**, **S.**, Blazing, R., Chen, Y., Jacobs, W.S. and Park, J., 2022. Gigapixel imaging with a novel multi-camera array microscope. *eLife*,11,e74988. Link
- 6. Ayaz, H., Baker, W. B., Blaney, G., Boas, D. A., Bortfeld, H., Brady, K., ... & Zhou, W., 2022. Optical imaging and spectroscopy for the study of the human brain: status report. *Neurophotonics*. Link
- 7. Cooke, C.L., Kim, K., **Xu**, **S.**, Chaware, A., Yao, X., Yang, X., Neff, J., Pittman, P., McCall, C., Glass, C. and Jiang, X.S., 2021. A multiple instance learning approach for detecting COVID-19 in peripheral blood smears. *PLOS Digital Health*. Link
- 8. Xu, S., Dai, X., Yang, X., Zhou, K.C., Kim, K., Pathak, V., Glass, C., Horstmeyer, R., 2022. Tensorial tomographic differential phase-contrast microscopy. 2022 International conference on computational photography (ICCP). Link
- 9. Xu, S., Liu, W., Yang, X., Jonsson, J., Qian, R., McKee P, Kim, K., Konda, P.C., Zhou, K.C., KreiSS, K., Wang, H., Huettel, S., Berrocal, E. and Horstmeyer, R., 2022. Transient motion classification through turbid volumes via parallelized single-photon detection and deep contrastive embedding. *Front. Neurosci*, 908770. Link
- Xu, S., Yang, X., Liu, W., Jonsson, J., Qian, R., Konda, P.C., Zhou, K.C., Dai, Q., Wang, H., Berrocal, E. and Horstmeyer, R., 2022. Imaging dynamics beneath turbid media via parallelized single-photon detection. *Advanced Science*, 10.1002. Link
- 11. Xu, S., Dai, X., Yang, X., Zhou, K.C., Glass, C., Konda, P.C. and Horstmeyer, R., 2021. Quantitative Jones matrix imaging using vectorial Fourier ptychography. *Biomedical optics express*, 13(3), pp.1457-1470. Link. *Editor's pick
- Yao, X., Pathak, V., Xi, H., Chaware, A., Cooke, C., Kim, K., Xu, S., Li, Y., Dunn, T., Konda, P.C. and Zhou, K.C., 2021. Increasing a microscope's effective field of view via overlapped imaging and machine learning. Optics express, 30(2), pp. 1745-1761. *Biomedical optics express*, 13(3), pp.1457-1470. Link
- 13. Yang, X., Konda, P.C., Xu, S., Bian, Liheng, and Horstmeyer, R., 2021. Quantized Fourier ptychography with binary images from SPAD cameras. *Photonics research*, 9.10 (2021): 1958-1969.. Link
- 14. Liu, W., Qian, R., **Xu, S.**, Konda, P.C., Harfouche, M., Borycki, D., Jonsson, J., Berrocal, E., Cooke, C., Sinclair, A. and Wang, H., 2020. Fast and sensitive diffuse correlation spectroscopy with highly parallelized single photon detection. *APL Photonics*, 6(2), 026106. Link. *2021 APL Photonics best paper
- 15. Konda, P.C., Loetgering, L., Zhou, K.C., Xu, S., Harvey, A.R. and Horstmeyer, R., 2020. Fourier ptychography: current applications and future promises. *Optics Express*, 28(7), pp.9603-9630. Link
- Xu, S., Zeng, Y., Chapman Jr, W.C., Li, S., Alipour, Z., Abdelal, H., Chatterjee, D., Mutch, M. and Zhu, Q., 2020. Real-time colorectal cancer diagnosis using PR-OCT with deep learning. *Theranostics*, 10(6), p.2587. Link
 *Featured in *Biophotonics* magazine, Nov/Dec 2020
- 17. Xu, S., Uddin, K.S. and Zhu, Q., 2019. Improving DOT reconstruction with a Born iterative method and US-guided sparse regularization. *Biomedical optics express*, 10(5), pp.2528-2541. Link. *Top download.
- Sun, Y., Xu, S., Li, Y., Tian, L., Wohlberg, B. and Kamilov, U.S., 2019, May. Regularized Fourier ptychography using an online plug-and-play algorithm. In 2019 *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)* (pp. 7665-7669). IEEE. Link

Issued Patents

- Method and System of polarization microscope imaging. US18/073,759
- Ultrasound-target-shape-guided sparse regularization to improve accuracy of diffused optical tomography and target depthregularized reconstruction in diffuse optical tomography using ultrasound segmentation as prior information. US16/948,261

CONFERENCE PRESENTATIONS

- Optica Computational Optical Sensing and Imaging, 2023: Multi-Scale Speckle-Plethysmography With a Multi-Camera Array Microscope [Oral]
- Optica Computational Optical Sensing and Imaging, 2023: Anisotropic Intensity Diffraction Tomography [Oral]
- SPIE Photonics West, 2023: Unsupervised deep image restoration for gigapixel microscopy [Oral]
- IEEE International Conference on Computational Photography, 2022: Tensorial tomographic differential phase contrast microscopy [Oral]

- OSA Biophotonics congress, 2022: Speckle contrast diffuse correlation spectroscopy with parallelized single photon detection [Oral]
- SPIE Optical Systems Design, 2021: Imaging anisotropy with vectorial Fourier ptychography. [Oral]
- IEEE International Conference on Computational Photography, 2021: Imaging deep within dynamic scattering media via SPAD array detection. [Oral]
- OSA Biophotonics congress, 2021: Rapid imaging of deep-tissue motion with parallelized diffuse correlation spectroscopy. [Oral]
- SPIE Photonics West, 2021: Imaging decorrelation via deep learning and SPAD array detection. [Oral]
- OSA Computational Optical Sensing and Imaging, 2020: Classifying decorrelation events hidden beneath scattering media via SPAD array detection. [Oral]
- SPIE Photonics West, 2019: Ultrasound-guided diffuse optical tomography using iterative Born approximation with sparse regularization. [Oral]

PROFESSIONAL SERVICES

- Reviewers of Advanced Science, Advanced Photonics Nexus, Light Science & Applications, Optics Communications, Optics Express, Optics Letters, Photonics Research, Transactions on Computational Imaging, and Journal of OSA-A, and Journal on Imaging Sciences.

Teaching

- Spring 2022: Teaching assistant of BME548 Machine Learning and Imaging at Duke University
- Fall 2022: Teaching assistant of BME671 Signal Processing and Applied Mathematics at Duke University

Supervised students

- Xiang Dai: Previously earned an M.S. in Biomedical Engineering at Duke University; now a Ph.D. student in Electrical and Computer Engineering at the University of California, San Diego.
- Xing Yao: Previously earned an M.S. in Biomedical Engineering at Duke University; now a Ph.D. student in Computer Science at Vanderbilt University.